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I. SUMMARY OF PROGRESS TO DATE 

A. DERIVATION OF BASIC FQUILIBRIUM AND STRESS I!QUATIONS AND THEIR 
FINITE DIFFEREmCE ANALOGS - 

The derivation of the basic equations in  the appropriate coordinate 

systems (spherical and toro ida l )  for  the general non-axisymmetric case has 

been completed. 

equations have been derived fo r  the general case (given i n  Appendix A f o r  

completeness). The above c i ted  equations are  based on the "thick-shell" 

theory which is appropriate f o r  the overal l  thickness of the composite s h e l l  
s t ructure .  

plates  - within the structure are  expected t o  cause numrical  computation 

d i f f i cu l t i e s  i n  the mixed derivatives f o r  the th in  layers i f  the thick w a l l  

formulation is u t i l i zed  f o r  these layers. 

t h in  layers w i l l  require an excessive number of nodes. 

adapting "thin-wall" theory fo r  these layers was  suggested by Mr. F. H. Brady. 

An analysis of t h i s  problem was  carried out by Dr. D. H. Platus. This 

approach requires only a two-dimensional solution of the displacement - 
equilibrium equations a t  the median surface of the shel l .  The s t r e s s  and 

s t r a i n  dis t r ibut ions throughout the s h e l l  thickness are then obtained using 

the Kirchhoff bending hypothesis for  th in  she l l s .  

summarized i n  Appendix B f o r  a f l a t  p la te  using Cartesian coordinates. 

The f i n i t e  difference analogs t o  the p a r t i a l  difference 

The existence of very th in  layers - the bond and sandwich face 
e.-, 

Furthermore, such a treatment of the 

The poss ib i l i ty  of 

This e f f o r t  method i s  

B. THESINGULARPOINT 

The equations fo r  the general non-axisymmetric case possess a 

s ingular i ty  on the geometric axis-of-symmetry. Inasmuch as t h i s  s ingular i ty  

is not an "essential-sin@;ularity", it should i n  principle be possible t o  

formulate local ly  valid non-singular equations f o r  t h i s -  point 

point is common t o  a l l  meridian planequsing it as a common node would reduce 

the t o t a l  number of nodes considerably. An attempt was therefore made t o  

derive such a formulation;, A summary of t h i s  e f f o r t  is  presented i n  Appendix C. 

The additional programming required t o  u t i l i z e  t h i s  formulation and the 

complications introduced would probably not j u s t i fy  the possible benefits  

(reduced t o t a l  number of nodes). t was  decided t o  es tabl ish the "singularity 
region" by the use of the simplified axisymmetric test  case. 

Since t h i s  

/ 
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I Summary of Fk-ogress t o  Date (cont.) 

C. PROGRAMMIMG 

Ppqp%nning of the input data modeling and the equilibrium 

coeff ic ien t  evaluation/storage subroutines is  about 50$ complete f o r  the two 

media axisymmetric test case'' Techniques f o r  reducing round-off error  a r i s ing  

i n  the use of the f i n i t e  difference models of the p a r t i a l  derivatives are  

being studied i n  conjunction with an examination of the l a t e s t  state-of-the- 

art i n  relaxation methods. 

2 

11. PLANNED ACTIVITIES FOR NEXT REPORTING PERIOD 

A. DERIVATION OF EQUATIONS 

The completion of the derivation of the "thin-wall" equations i n  

the spherical-toroidal 

next reporting period. 

these equations w i l l  be in i t i a t ed ,  

coordinate system w i l l  be accomplished during the 

The derivation of the f i n i t e  difference analog of 

B. FORMULATION OF BOUNDARY CONDITIONS 

The e f f o r t  w i l l  be expanded during t h i s  period i n  formulating 

the boundary conditions f o r  a l l  cases under consideration. 

C. PROGRAlMMING 

Effort  w i l l  continue i n  programing the axisymmetric t e s t  case 

with the l a t e s t  input incorporated. The objective of t h i s  t e s t  case i s  t o  

es tabl ish octimum gr id  spacing, gain experience i n  the convergence problem 

and t o  es tabl ish the optimum grid layout near the singular point. 

be noted that the major par t  of the programming already completed and tha t  

planned is di rec t ly  applicable t o  the general case. 

111. FBo'l3mM AREAS 

It should 

A. BASIC liQUA!L'IONS 

Numerical computation d i f f i cu l t i e s  (accuracy degradation) are 
an€icipat,ed En the use of the "thin-shell" approximations f o r  the bond and 

face plates .  

formulations, m e  extent of the d i f f i cu l t i e s  and methods f o r  t he i r  

These problems are due t o  fourth derivatives required i n  these 
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1- I11 Problem Areas (cont ) 

a l lev ia t ion  w i l l  be investigated upon completion of the derivation of the 

equations i n  the proper coordinate system. 

B. 'ITKES~GULARPOIMT 

As pointed out prevfously, the "simple" axisymmetric test  case 

w i l l  be u t i l i zed  t o  overcome t h i s  problem. 

the form of an "optimum" grid around the singular point. 
The expected solution w i l l  be i n  

C. OVERRELAXATION METHOD AND CONVERGEXCE CRITERIA 

An extensive e f f o r t  i s  planned i n  t h i s  area with the t e s t  case 

providing the too l  for  tes t ing approaches. 

developed specif ical ly  suitable t o  the present formulation: 
Convergence c r i t e r i a  w i l l  be 

IV. PROGRAM C W G E S  

The progress t o  date and the problems encountered during the last 
reporting period make it necessary t o  revise the or ig ina l  program schedule. 

These modifications are designed t o  assure timely achievement of the program 

obJectfves. 

t o  t h i s  revised program schedule w i l l  be made i n  the subsequent monthly reports.  

The revised program schedule is  shown i n  Figure 1. Reference 
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Figure 1 
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Derivation of EQuilibriwa Equations i n  Tenas of 
Dirplarcements in  Spherical an8 Toroidal cloord.inarterp (coat ) 

TABLE I 

COEFFICIlBJTS OF 3QBATIWS 

SPHERICAL COORDINATZS (cont . 
(cp t 0 )  



( A+&/r Q I 0 

Derivation of Equilibrium Equations i n  Terms of 
Displacements i n  Spherical and Toroidal Coordinates (cont . ) 

TABLE IX 

C O E F F I C I ~ S  OF EQlJILIBRITnr EQVATIOlfS 

T43IZOIDAL COOBDIMATES (cont e 

0 0 i 

_I 8 

91 
k 0 e, 

91 
4 0 0 

8 
I 
1 0 B 

3 r  I- I o I 

Q 0 



Derivation of Equilibrim Equations i n  Terms of 
Dieplaeements i n  Spherical and Toroidal Coordinates (cont + ) 

!Uam I1 
CQEFFICXERPS OF EqnILIBRrUM EQUATIONS 

mmmL coo-= (.m?xt.) 

k = l  1 k = 2  I k = 3  
I I 

0 

0 0 I 

TA&Ts 111 
COEFFICI~S OF QIJILIBRIIJH EQUATIONS 

POLAR COORDINATES - FOB APPROXIMATE TWO DIMPiSIONAL WCAL 

SOLUTION FOB AMY ( 8  P c-tmt) CROSS-SEZTIOHAL PLANE 

k = 1  

91 bL /R2 

'k I 0 

k 
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Derivation of Equilibrium Equations i n  Terms of 
Dililplacements in Spheriaal and Toroidal Coordinates (cont . ) 

1 k = l  I k = 2  

Jk I 
0 n 

0. 

91 
I I 

lW!!Er 

are also ineluded, sOnly applicable toefficient. are l.i&d* 

rspLkcirrg B by r, the above coefficients are applicable ia the 
torus crom-section region. 

Temperature dependent mdmA.al property derivative term 
3 

By 



EqailibFiplb &patieme in Terer -a f  
i n  *erica1 and Toroidal Coordinate$ (coat , )  

Where 8 iat. the K.rQIL6ok.r d e l t a  defined by 
is 

Writing the strains in term of .&isplmmments fmm either 

(15) aad arhortenhg the tsQicarrelature by def in ing  the ptressles 

(14)  or 



Derivation 02 Equilibrium Equations in Term of 
Disglme~nents i n  Spherical and Toroidal Coordinates (oont . ) 
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Derivation of EQuilibriuPs Equations i n  Terms of 
Mrglaraemente i n  Sphericral and Toroidal Coordinates ( c a t  . ) 
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Derivation of Equilibrium Equations i n  'perms O f  
Dirplacements in Spheriad and 'Foroidal Coordinates (uont ) 

--: 011y r~pll~rbla.rs;~rro a f J . d . a a e f ~ c i e a * a  are  

U&d. By replacing B by r, the abve ooefiicirnta a r e  

applicable in the torus croaa-aeation regioa. 



lbtm-e, d n c e  

rprLb l a  applicable tofhe product 
appreaehes 5em vloile 5 appraaches infinity, L'&apital*o 

be 

as QWO. Taking the limit, there is obtained 
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Derivation of Eqyllibrium Equations i n  %rms  of 
Bisplwementer i n  Spherical and ToroidaJ. Coordinates (cont ) 

Temperature Dependence of Elast ia  Constants - 

If, i n  addition t o  the coefficient of thermal expansion, the e l a s t i c  con- 
8t6.nt8 are  strongly dependent on temperature, then additional t e r m  must be 

included i n  the displacement equilibrium equations t o  aacount for the riipecial 
derivatives of these coxmtants. 

respect t o  coordinate ai, fo r  example, from Equation (9), there is obtained 

Differentiating the stress component T i i Y i t h  
r 
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*ripration of Equilibrium Equations i n  Terms of 
Displaeemmts in Bpheriaal and Toroidal Coordinates (oont . ) 

- (3h + 2)L) Q (T) - dT 
bai 

T 
P 

'&w -ta A'k, Bfk, . are ttibu$erted below for a w i c a l  and toroldal 
owrdinatea, wd for the speoial point i n  spherical coordinates 0x1 the axis of 
sgPmaetry for the ease of axial symmetry. 
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lkrivation of Equilibrium Equations i n  'Ilermd of 
Birsplauements i n  Spherical and Toroidal Coordinstegl (oolst . ) 

k r l  k - 2  

0 

- 
E', 0 0 

k - 3  I 

I 

0 

0 
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A'k 

k - 1  I k r 2  I k - 3  
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0 0 I 0 

0 I 0 l 0 
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Derivation of Equilibrium Equations i n  Term of 
Msplacrements in  Spherirral and Toroidal Coordinates (cont . ) 

k r l  

0 

Fk 1 0 

H', 1 0 

0 

8 

0 I 0 1 
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0 I 0 i 

I 0 I 0 
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Ikr ivat ion o f  Eqpilibrium Equations i n  Term of 
DisgJmreements i n  Spherical and Toroidal Coordinates (cont . ) 
kcis Qf SgBimstry with Axla3 B m t r y  

The only Don-wro terms i n  the coefficients of Table 3X on the  axtb of 
symmetry i n  the axially-symmetric owe are the following: 

Fini te  Difference Formulation 

!!!he difference mmlqp to the partial d i f f e ren t i a l  equations are constmated 

011 ea grfCt network as shown i n  Figure 2, fo r  whiclh % I constant l i nes  are 

ordered by the subscript i, am I constant l i nes  by the subscript j, 4 = 
constant l i nes  by the subscript k, and the interseation of grid lines (nodes) 
by the t r i p l e  subscript i, j, ke 

'1 

Figure 2. Grid Notation f o r  Finite Difference 
Fopmulat ion 
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Derivation of 
Displarrelllents 

Equilibrium Equationar i n  Tenas of 
in Spheric& and Toroidal CwrdinaOeer ) 

Por tbe general ease the grid spacing will be irregular and the increments 

in t h e  v ie in i ty  of a node will be designated by the following: 

h4 = ( % ) i  - wi+ 4 4  - (%Ii - Wid 4B4 (%Ii = WiJJ 
- -  

Let f (% , ctB , 4 ) be pny function of the coordinates such tha t  it ernd its 
partial derivatives (ug t o  any order required in the analyeis) are continuous, 

rnsd elrpanii the m o t i o n  about the point i, j,  k. 
w i t h  or igin at i, j, k and with 5, , pa 
the funetion f (si , ga, &, ) is written 

Us- a new coordinate system 

& directed along % , a,, &, respetttively, 

f c51, sa, % )  - fi,$,]F + 4  && + %  5, + 4  h +B+ 5% 61 

+ % % & + + % & a  + ~ g , B + ~ b a B + ~ 6 B  (23 1. 

+ 4, 5, 5sB + * * a  

+ 3 x 0  51 'Sa %a + 4, 51 Saa + 4, 5% %tB + 4 s  sirn gn- 

%e first and second derivatives of f (ai, a,, ag ) with respect t o  4, a,, 
w e  obtained from Equation (23) according t o  

considering the values of f (51 ,  tm, Q ) at the adjacent to 
at t h ~ s e  a o b s  i, j,k, the coxmtaats B~ are evaluated i n  terms 

a d  the gr id  sgacrings as shown i n  Figure 3. 
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Derivation of Equilibrium Equations i n  Terms of 
Displacements in Spherfcal and Toroidal Coordinates (cont . ) 

1 11 
12 

Figure 3. coordinates of Iqy&~ar Mesh UtervaJg 

Rote t h a t  the grid spacing increments h 

sions of length but have the dimensions of q, PI a an& 4 . 
do pot, in general, have the dimen- i J  - 

A t  points 1 and 3, Zqpation (23) becomes 

where tenas of higher order are deleted. 

gives f o r  the first and second irregular central derivative with respect t o  ai; 
Solving f o r  % snd % from Equation (25) 

- 



Derivation of Eqyilibritun Equations i n  T e r n  of 
Msplacementrr i n  Spherical and Toroidal Coordinates 

second regular o e n t r a l  derivatives with respect t o  % 

(oont . ) 

, j ,k + 'i-1, j ,k  - 2fi fi+l, j, k 
' %)i,j,k = %' 

gives for the first and 

(27) 
- -  

By a similar procedure the following first and second regular and i r regular  
cent ra l  derivatives are obtained w i t h  respect t o  the coordinates 'md ag : 

First Re&.= Csntral 'lkrivativea (4 = b1 s h w ,  & = bl PI ha ) 

'i, j ,k+l  fi, j,k-l 
243 

Fir& Irra-galar Central ,Derivatives 

Second Regular Central Derivatives (h, = 4% = 4 3 , 4 #  "431 5 e s )  

fi, j,k+l j ,k + fi,J,k-l 
b4' 

) P w f,J,k 

Second Irregular Central Derivatives 



Qerivertion of E q u i l i b r i u  Equations i n  Terms ‘of 
Dieplacements i n  Spherical and Toroidal Coordinates (oont . ) 

Forward and Back~@ Derivatives 

By applying the hame procedure as above with respect t o  two nodes located 

e i t h e r  forward or backward from the or igin ( i ,  j ,k),  the  first and second regular 

and irregular derivatives are obtained i n  t e r n  of the f’unction f(%, CU,,  crg ) 
evaluated at  these nodes. - 

c- directions:  

Ffrst Irregu$ar Forward Derivatives 

!The results are summarized below f o r  the three 

I 

First Regular Forward Derivatives 

I For equal gr id  spacings i n  each of the three coorainate dirteetisns, b f i n e p  
socording t o  

$1 - k P / 2  e hr 
4111 = b a / 2  9 

41 -43eI2 =43 > 

I 
I 
1 
I 

Equations (36) - (38) reduce t o  
- -  

e 

f i ,J ,k  + fi+l, j ,k - fi+2,j,]r 
2% 

I 
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Derivation of Equilibrium Equations in Terms of 
Disglacements in Spherical and Toroidal Coordinates (cont e ) 

.. ‘i,j,k + fi, j,k+l - fi, j,k+2 
as 

I 
l 8  

Second Regular Forward Derivatives I With equal gr id  spacing, according to Equation (39), Equations (43) - (45) 
reduce t o  8 fi+l,j,k + fJ,J,k + ‘i+2,j,k 

I 
(46) 
- -  

First Irregular Backward Derivatives I 



Derivation of Equilibrium Equations in Terms of 
Displrseements in Spherical and Toroids1 Coordinates (cont a ) 

I 
I 9 4  

=St .kgUlm BWkvaPd Ikrfvatives ($3 1 - 2 h, eta,) 

- -  

I 
I 

I 
I 
I 
I 
I 

- -  

- -  

Second Regular Backward Derivatives 

( 5 9 )  
- -  

(a) 

W e d  Derivatives 

It e m  be shown from Equation (23) that mixed derivatives require values 
of the function at any six nodes in the vicinity of the point under consideration. 
Figure 3 shows various @ombinations of mixed derivatives with respect to the 
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Derivation of Equilibrium Equations i n  !Perms of 
Displacements i n  Spherical and Toroidal Coordinates (cont ) 

Figure 3 .  Irregular Mesh Intervals Por W e d  Central, Forward Backwgd and 
Corner Derivatives 

Central 

Forward 

Backwsra 

Corner 

- oc, 

t 

a2 
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Derivation of 
Displacements 

E q u i l i b r W  Equations i n  TeI’lsS of 
i n  Spherical and Toroidal Coordinates (cont . ) 

coordinate axes Cvr and aQ 
involve the four corner nodes as wel l  as two adjacent nodes i n  e i the r  of the 

two coordinate directions.  

summarized below f o r  the coordinate directions ax and CyD: 

Second Mixed Irregular Central Derivative With Respect t o  el and ea 

It is noted t h a t  the mixed cent ra l  derivatives 

The various combinations shown i n  Figure 3 are 

1 

- -  

[“a3’ Ifi+l, j+l ,k  - ‘i-1, j+l ,k  - %Ib ) ( f i+ l ,  j ,k  - ‘i-1, j ,k l  

!I - 41’ (fi+l, j-1,k - f  i-1, j=-l,k 

r 

Ifi+l, j+l ,k  - fi+l, j-1,k 1- - “*) ( f i , j+ l , k  - f  i , j - l , k l  

I - %’’ lfi-l, j+l ,k  - f  i-1, j-1,k) 

Second Mixed Irregular Forward Derivative with Respect t o  Cyl and CU, 

[ fi+l, j+l ,k  - fi+l, j , k  f i+2, j+l ,k  + fi+2, j,&l 
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Derivation of Equilibrium Equation$ in Terms of 
Displmements in Spherical snd Toroidal Coordinates (eon*. ) I 

[ %s8 Ifi+l,j+l,k - f  i,j+l,k - fi+l, j+2,k + fi, juZ,k) 

- hZ8 (‘i-1, j+1,k - f  i, j+l,k - ‘i-1, j+2,k + f  i, j+2,k]] 
-.. 

Seooad Eslrefl Irregulm Backward Derivative With Respect to ar, and Qa 

(66)  [q3’ lfi+l,j-l,k fi+l, 3-2,k + f  i, 3-2,k - f  i, j-1,k) 

- ( ‘i-1, j-1,k - f  i, j-1,k - P  i-1,3-2,k + f  .,J-p,k]] 

Seoond Mixed Irregular Corner Derivative With Respect to ai and am 

b,f 1 
”) $ 8  4 L  h a  (hi - 4 1 1  

(67) ( fi+l,j+l,k fi+l, j,k - f  i, j+l,k + fi, j,k I 
.. 

4r8 (‘i+2,j+2,k fi+2,j,k - f  i,j+2,k + f  i,j,k/] 

Second Mixed Regular Derivatives 

A l l  of the above results can be reduced to regular derivatives with respect 
to either el, CV, or both coordinates by makiq the substitutions 
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&rimt ion  of EQtxilibriuBl Equations i n  Term of 
Displmements i n  Spherical and Toroid$l Coordinates (cont . ) 

I 
i 
I. 
I 
1 

i 1 
I 
I 

% B  h4 
$1 = F  =r=% (68) 

4 a  = 4 a  =T =T=- (69) 
b B  b4 

(70) $ = 4 = h  

The various derivatives are summarized below fo r  the case i n  which all gr id  

spacings are equal (is@., h, = 4).  

Second Mixea Regular Central Derivative With Respeet t o  ar, and I 
4, b )  

a8f 1 
$T-]i, j,k = lfitl, jtl’,k .. f i+ l , j , l ,k  - ‘i--l, j+l,k + f  i-1, j - l ,k ]  (71) 

I 

Second Mixed Regular Forward Derivative With Respect t o  ar, and a& 
I ,  

1 

+ f  - V f  -1 
a-)ij j ,k  E [:itlj,j+l,k f i t 2 , j t l , k  ‘i+l,J-l,k i t 2 ,  j-l,kl (72) 

I 
-1 

i,,j,k I f i t l , j+ l ,k  - fi+l,j+2,k - ‘i-l,j+l,k + ‘ i - l j+2,k)  (73) 

Scpaagd Mixed R e g u l a r  Backward Derivative With Respect t o  CW, and % 

(74) - b’f 1 
’) --)itj,k (f%-l,,,j+l,k - f i -2 , j t l ,k  ‘i-l,j-l,k + f i -2 , j - l ,k]  

I 

I 

1 
- [ fi+2,J+2,k - ‘i+2,j,k - f  i ,j+2,k +fi, j ,k]]  



The equilibrium. equa%iona in spherical coardinates In t3erm of displace- 

-merits are m i t t e n  in the form 

The temperature t e r n  on the right hand s ides  of Eq~mt,ions (2) md ( 3 )  
equivalent to hocty forces defined 8s 



I- ' 

Singlllaritfes at a n  h i s  9 f 0 (con%.) 1 

(4 3 

If 'tihe el.astic constants are  temperature dependent the equilibrium equations 

(11, (2) and (3 )  are writ ten i n  the form 

where 

= functions of coordinates ( R ~ Q , ~ )  md e l a s t i e  constants %e9 BkLs 'kf 
h and ~r, 

A'ki, B'kij cJgi = functions of coordinates (R ,q ,8 )  and e l a s t i c  

constants h [ T )  and @(T), where T is  the heat shield 

temperature which is a function of the coordinate ( R j ( p 9 8 )  

vi, Wi P functions of dfsglacemen%s u(Rjcp,eIj v(R,q,e) and w(R,Q9B) 
and t h e i r  respective derivatives of %he first and second 

orders respectively. 

Fk = body force expressed as ( 3 h  + *) CY f T )  bT - 
"k 

Equation. (1) may be furt$es shortened into the foran 

where 
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S i n g u l u i t i e s  at an h i s  cp = o (cont..) 

It is  first considered tha t  the e las t ic  

t>ure. -Xu t h i s  ease, EquatEon (6) becomes, 

tmts are independent of tempera- 

deleting the symbol of sunamation, 

Replacing the variables R 9  (ps a d  8 of Equation (7) by R-R', (p-' a d  e d ' ,  
respectively, and integrating the resu l t  with respect t o  the vapiables 

(R-R', (p-(pI, e-e' 3 over a f i n i t e  volume v gives k- 

where dV' = (R-R')@ s i n  (tp-cp') d (R-R')  d (9-cp') d ( 0 4 ' )  and the f i n i t e  volume 

'bk is bounded as 

% =  i" (R-R' )* d (R-R' 

%nt;egrat,ion of" the function Gmki Imf with respect t o  (R-R') gives 
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Sing-ularlties at an h i s  cp 3 o (eont.) I 

Integration of ~ g r ~ e ~ t i o n  (11) with respect t o  ( e - e ' )  gives 

11/...1 enbi (R-R'IEJ sin (cp-cp') d (R-R') d (cp-cp')  d (0 -0 ' )  

hK2 
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I- 

-$ 
QKl 

% (9c2 -1 I )- ' R a m ]  a 'mi sin (CP-Q') d (R.5.B') d (Q-Q' )  d (0-0 ' )  

- 9 c l - Q K l  
At a point (%c cpKc, eKC), Equation (12) becomes 

P 

Tne right hand side of Equation (8) becomes 



I- 
I 
I 
R 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I .. 
I 

Singular i t ies  a t  m Axis Q = o (cont.) 

and, hence, 

0 
'KC FK 'K 

1 

Hence, from Equations (13)r (13a), (14) and (16), Equation (8) becomes 
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I Singularitfes at an h i s  cp = o (eont.) 

Where 'Pmi 
I 
E 

'pK2 

RK1 
may be found by taking the average of eight surrounding points. 
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APPENDIX c 

Thin-Shell Interface Conditions f o r  Stress  Analysis 
of Thick Laminate Structures 

Equations are  derived fo r  t reat ing the s t resses  i n  a thick-shell  

laminate structure i n  the neighborhood of a th in  layer which, by i t s e l f ,  can 

satisfy the Kirchhoff bending hypothesis f o r  t h in  she l l s .  

the th in  layer can be t reated by an equivalent interface condition which 

re la tes  the displacements of the median surface of the she l l  t o  the discon- 

tinuous normal and shear s t resses  on the adjoining surfaces.- From continuity 
of displacements across the t h i n  layer the interface s t resses  can be climated 

t o  yield three simultaneous pa r t i a l  d i f f e ren t i a l  equations fo r  the three 

displacement components at the interface. The analysis is presented f o r  a 
f la t  p la te  using a system of Cartesian coordinates and w i l l  be generalized 

later t o  the curvilinear coordinate systems of i n t e re s t  i n  the heat shield 

It i s  shown t h a t  

analysis 0 

Consider a th in  p la te  of thickness b with i ts  median surface lying i n  

the x-y plane and the distance z measured from the median surface. The 

temperature and, consequently, the coefficient of thermal expansion and 

modulus of e l a s t i c i t y  w i l l  be allowed t o  vary through the plate  thickness so 

t h a t  the median surface w i l l  not, i n  general, b i sec t  the p la te  thickness. 

With t h i s  generalfty, the th in  plate i t s e l f  can consist  of a laminate of 

d i f fe ren t  materials. According t o  Kirchhoff's bending hypothesis the s t ra in-  

displacement re la t ions f o r  a point (x,y,z) i n  the p la te  are given by 
Reference (1). 

aU anW 
a 7  e 0 - - - z  

x ax 

aU av  
yxy T + E -  
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Thin-Shell Interface Conditions f o r  Stress  Analysis 
of Thick Laminate Structures (cant*) 

Where u,v, and w are displacements of a point (x,y) on the median surface 

and ex’ e 

the x-y plane. 

and yxy are  the normal skrains and shear s t ra in ,  respectively i n  
Y 

The s t ress -s t ra in  relations are given by 

0 y = Elx,y,z) 1-v [ (ey + v ex) - (l+v) Cy (x,y,z) T 

XY 

Where ax and CY 

plane. 

camparison with the stress components of Equation (2) and are neglected i n  

t h i n  s h e l l  theory. For the problem under consideration, however, the th in  

shell wFllbe  subjected t o  both normal and shear s t resses  over i t s  l a t e r a l  

surfaces and it is desired t o  re la te  the difference o r  discontinuity of these 

s t resses  across the she l l  t o  the displacements of the median surface. 

relationships may be obtained from the equations of equilibrium expressed 

i n  terms of displacements using the Kirchhoff bending hypothesis of Equation (1). 

The equilibrium equations i n  terms of s t resses  are given by 

are normal stresses and 7 
Y XY 

i s  the shear s t r e s s  i n  the x-y 

The normal s t r e s s  aZ and shear s t resses  Tx2 are  usually small i n  

These 

xz a7 a7 
+--=+-  a 0  ax a y  a2  

aaX - 

a7 ao a7  
--=+-J +-J%o ax a y  a 2  

2 
a7 a7 aa 
ax  a y  a z  _ x z + y z  + -  3 0  

Writing the s t resses  of Equation (2)  i n  terms of displacements using 

Eqmtions (1) and substi tuting €he resu l t s  i n  Equation (3),  the equilibrium 

eqgations i n  terms of displacements become 

Page C - 2  



Thin-Shell Interface Conditions f o r  S t ress  Analysis 
of Thick Laminate Structures {oront.) 
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1- 
I 
1 
1 
1 
I 
I 
1 
I 
D 
1 
1 
I 
I 
I 
I 
1 
I 
I 

Thin-Shell Interface Conditions for Stress  Analysis 
of Thick Laminate Structures (cont.) 

. I  
If the first two of Equations (4) are integrated across the plate  thickness 
there resu l t s  

~ I ( x , Y )  IB + f d ~ , ~ )  ax 3% + G(X,Y)  3% by - gi(x,y) 4 - U ( X , Y )  @L ax 

Where the quantit ies G, 4 and NT are defined by 

9, = p l a x , Y , z )  1 dz 

4 $ p j Z  E(x,y,z) dz 

1 
‘T 5 /.(x,y,z) (x,y,z) T (x,y,z) dz 

/ 
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Thin-Shell Interface Conditions f o r  Stress  Analysis 
of Thick Laminate Structures (cont a ) 

and Txz 1 *, Txzl 
of the plate .  

e t c .  are the respective shear s t resses  on the two-surfaces 

If the median surface is determined such tha t  

4 = 0 9  ( 8 )  

which is, in  f ac t ,  the condition defining the median or  "neutralw surface, 

then Equations (6) reduce t o  two expressions f o r  the shear s t r e s s  disconti-  

nui t ies  across the th in  plate In  terms of the median surface displacements; 

i .e . ,  

A t h i r d  equation, which is necessary t o  define the three displacement 

components u, v and w at the median surface, i s  obtained from a consideration 

of equflibrium of forces normal to  the plane of the plate. 

Reference (2)  t ha t  t h i s  expression of equilibrium can be writ ten as 

It is  shown i n  

where p i s  the l a t e r a l  pressure loading on the p la te  and the MIS and MIS 
are sectional forces and moments defined by \ 

Substi tuting f o r  ox, oy and *xz from Equations (2), with the definit ion,  

Equat-ion (81, of the median surface, the sect ional  quantit ies of Equation (11) 

become 

I 
Page C-5 



Thin-Shell Interface Conditions for Stress Analysis 
of Thick Laminate Structures (cont.) 

9, [ bv + ki] 
Nq = 2 ax by I 

I 
The lateral pressure, p, acting on the thin plate is simply the difference 
betwee-n the noma1 stresses oz II  and cr I acting on the two surfaces; i.e., 

z a  

Hence, on substituting the sectional forces and moments defined by 
Equations (12) in Equation (lo), an expression is obtained analogous to 
Equatlons ( 9 )  for the discontinuity of normal stresses across the thin 
plate in terms of the three displacement components at the median 
This equation is fohd to be - 

surface. 

If it is assumed that the displacements at the surfaces of the two media 
In contact with the thin layer under consideration are equal t o  the displace- 
ments in this layer at the median surface, then the surface stresses may be 
expressed in terms of these displacements using Hooke's law with the 
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Thin-Shell Interface Conditions f o r  Stress  Analysis 
of Thick Laminate Structures (cont.) 

respective material properties of the two adjoining media. 

Equations ( 9 )  and (15) become three p a r t i a l  d i f f e ren t i a l  equations i n  the 

three displacement components u, v and w at the thin-shel l  interface.  

equations w f l l  replace the general three-dimensional equations at  the 

"interface" nodes result ing i n  only one node at  each such interface through 

the thick laminate structure.  Once the three displacement components i n  the 

interface plane are determined, the s t r e s s  d i s t r ibu t ions  throughout the 

t h i n  layer are obtained from the foregoing thin-shell  analysis. 

Thus, 

These 

Page C-7 



1. 

2. 

H. S. Tsfen, "Similarity Laws f o r  Stressing Heated Wings", Journal 
of the Aeronautical Sciences, Vol. 20, No. 1, January 1953. 

S.  Timoshenko, "Theory of Plates and Shells", McGraw H i l l ,  1940, 
p.  300. 


